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The Network Representation and the
Unloaded Q for a Quasi-Optical

Bandpass Filter

MING HUI CHEN, MEMBER, IEEE

,4 Irstract-.k simplified eqrdvafent network for a quasi-optical bandpass

filter consisting of several wire-grid polarizers has been developed based

upon tbe concept of local coordinates. Various modes of loss are evafoate~

and the equivalent onloaded Q is compnted.

I. INTRODUCTION

A T MILLIMETER and submillimeter wavelengths,

and in the far infrared region, a quasi-optical filter

provides lower loss and higher power handling capability

than waveguide filters. Saleh introduced an adjustable

quasi-optical bandpass filter with design formulas in two

recently published articles [1], [2] which demonstrates the

practicality of quasi-optical filters. The filter contains

several metallic wire grids in space with separations of

multiples of a quarter-wavelength. Losses of this filter

have not yet been investigated. This paper presents a

method for computing the loss characteristic.

The equivalent network presented here is based on a

local coordinate concept which leads to a systematic and

simplified formulation. As a result, the grating loss [3] can

be accounted for in the equivalent network, and the

unloaded Q may be evaluated.

II. MODAL REPRESENTATION IN FREE SPACE WITH

ROTATED COORDINATES [4], [5]

Free SP2LC(3 may be considered as a uniform waveguide

of infinite cross section; therefore, two orthogonally

polarized plane waves can be the normal modes in this

waveguide. A plane wave propagating along ZO with any

direction of polarization may be represented by the nor-

mal modes along XO and yO in the coordinate system Z or

i?O and jO in the coordinate ~ystem ~ (see Fig. 1). The

modal relationships in X and Z are as follows:
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Fig. 1. Geometry of two coordinates Z and ~.

where E(x,y, z) and IJ(x,y, z) are the electric and mag-

netic field for the resultant plane waves, V’s and 1’s are

the modal voltages and currents that satisfy the transmis-

sion line equations, and e’s and h’s are the moclal func-

tions for orthogonal plane waves. Mode functions are

defined as follows:

( el(-w)= X.]

\ Ir,(x,y) = y, in,2
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/r2(x,y) = – x~ 1’
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The above representation yields a relationship between

two sets of modal amplitudes which may be written in

matrix form as
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Fig. 2. Equivalent network of mode transformation.
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This matrix equation for the modal voltages and currents

describes an equivalent network, as shown in Fig. 2, which

includes transformers.

III. NETWORK REPRESENTATION FOR A BASIC

QUASI-OPTICAL FILTER

A basic quasi-optical filter contains three grids in

parallel planes with equal separation as Fig. 3(a) shows

[1], [2]. The angular orientation of the middle screen with

respect to the first and last screen determines the band-

width of the filter. This structure exhibits a bandpass

response under plane-wave excitation. This is con-

veniently analyzed by means of an equivalent network. It

is well known that, when a plane wave is normally inci-

dent upon a parallel wire grating, the grating acts as an

equivalent capacitive loading if the incident wave is

polarized in the direction perpendicular to the grating; the

grating acts as an inductive loading if the incident wave is

polarized in the direction parallel to the grating [6]; and a

complicated equivalent network results if the incident

wave has some other state of polarization with respect to
the grating [7]. Therefore, a complicated equivalent

network would be needed to represent the center screen if

a conventional fixed coordinate system were used. How-

ever, at each grating, based upon the concept of local

coordinates, one can always select a coordinate system

whose base vectors XO and yO are perpendicular and

parallel to the grating, respectively. Therefore, the simple

local coordinate representation of capacitive and induc-

tive loadings can be applied for a grating with any orien-

tation. Consequently, the structure in Fig. 3(a) is repre-

sented by the equivalent network in Fig. 3(b). Three

identical networks G in Fig. 3(b) represent the three
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Fig. 3. Geometry and equivalent network for a three-screen filter,

screens with respect to their local coordinates, and the

coordinate rotation networks R(O) as shown in Fig. 2 are

used to connect adjacent local coordinates. In network G,

the r and T networks represent the capacitive and induc-

tive loadings, respectively, for a thick grating with loss;

these networks would become a shunt capacitance and a

shunt inductance if a lossless thin grating were considered.

The parameters B., Bb, X., and X~ may be found in [6].

Since the electric field in the local coordinates is parallel

to the grating, an available technique [3] for the computa-

tion of loss may be applied. The parameters ~ and XP

are derived, therefore, for loss modification as follows:

-F_-RP Xp ~ up ~

zo=~=77ro 20 60r
(5)

where rO is the equivalent radius for the grating strips [6], p

is the grating period, o is the angular frequency, p is the
free space permeability, and u is the conductivity of the

grating strips.

IV. NETWORK REPRESENTATION FOR A

MULTILAYER SCREEN FILTER

A multilayer screen filter [1], [2] contains several layers

of equally spaced gratings with various orientations. Rep-

resenting each individual grating in its local coordinate

and connecting them with uncoupled modal transmission

lines and the coordinate rotation network results in a

network representation for the multilayer screen filter as

shown in Fig. 4(b).
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Fig. 4. Geometry and equivalent networks for a multiple-layer screen

filter.

Since ths rotation matrix l?(q) for the coordinate rota-

tion network has the following properties:

R-’(@) =R(–$)

R(@,)”q@2) =17(4 q+02,) (6)

and it commutes with the uncoupled transmission lines,

the network in Fig. 4(b) may be simplified as shown in

Fig. 4(c).

V, THE Loss CHARACTERISTICS

The insertion loss of this type filter is the sum of the

cross-polarization loss, the ohmic loss, and the dielectric

loss 1 resulting, respectively, from the energy coupled to

the cross-polarized waves, the energy lost on the conduct-

ing strips, and the energy dissipated in the dielectric

sheets 1 that support the grating strips. These losses may be

represented via the conventional way of defining the un-

loaded Q‘s as follows:

i = &+Q:,m +Q:,.,
(7)

where Q. is the equivalent unloaded Q related to total

10SS,and {?.YP,QO~~, and Q~,,l are the Q‘s of cross-polari-
zation loss, ohmic loss, and dielectric medium loss, respec-

twely.

The midband insertion loss for a typical filter may be

estimated from the 3-d13 bandwidth, the unloaded cavity

Q, and the number of cavities for the filter [8]. The same

equation may also be used to estimate the cavity Q from

the given midband insertion loss. Assuming that this
three-screen filter is equivalent to a single-cavity filter, the

equivalent unloaded cavity Q may be estimated from the

lThe dielectric sheets were not shown in Fig. 1 for clarity. ‘fhey are
added as support structures for the metal gratings and can be repre-
sented by short sections of lossy transrmssion lines.
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Fig. 5. The transmission characteristics for the (5/4)A mode of a
typical three-screen fitter of copper wires with 1= 12.5 mm, p = 0.2 man],
w =().12 mm, and t =().()1 mm. The screen-supporting dielectric sheet

with thickness of 0.0254 mm, dielectric constant of 2.56,, and low

tangent of 0.005 are included.
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Fig. 6. QXP Characteristics for the (5/4)A mode of a three-screen fdtel

with 1= 12.5 mm, p=O.2 mm, t=O.01 mm, and&=30 GHz.

computed transmission response for the network. in Fig.

3(b). For example, a typical three-screen filter with copper

gratings supported by thin dielectric sheets has the ccmi-

puted transmission performance shown in Fig. 5. As is

shown in Fig. 5, this typical filter has a rnidband insertion

loss (AL) of 0.017 dB and a fractional bandwidth (BW) c)f

0.0815. The equivalent unloaded Q for this ecpivalent

one-cavity filter is 3170 according to the following equa-

tion [8]:

(8)

Consequently, QXP, Q~h~, and Qd,.1may be scparal.el:y
computed by manipulating the filter parameters in such a
way as to have only one type of loss apparent at a tim(t.

Fig. 6 shows QXP as a function of W/P. the grating

width to period ratio, for the grating angles of 45., 60, and

750. As is shown, the minimum cross-polarizal.ion loss

corresponds to W/ PzO.53 which might be due to th~e

balance of capacitive and inductive loadings. Qoh~ versus
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Fig. 7. QOti characteristics for the (5/4)A mode of a three-screen filter
with 2=12.5 rnrrLp=O.2 mm, t=O.01 mm, P=l.7241, and-fo=30 GHz.

W/P for copper gratings with the angles of 45, 60, and

75° is plotted in Fig. 7. Fig. 8 shows the Q~lel characteris-

tics resulting from the fiberglass supporting layers with

various loss tangents and thicknesses.

VI. CONCLUSIONS

A network representation for structures of multiple

layers of gratings has been presented which simplifies the

method of analysis and provides better understanding of

wave phenomena for this type of filter. Moreover, without

this network representation, the available knowledge [3]

about the grating loss could not be used in computing the

unloaded cavity Q for this type of filter.

Loss characteristics have been analyzed from which a

filter with minimum loss can be designed.
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Fig. 8. Q&el characteristicsfor the (5/4)A mode of a three-screenfilter
with 1= 12.5mm, P=O.2 mm, t=O.01 mm, @=60°, andjo=30 GHz.
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